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In this  paper,  we  extend  the  second  and third  order classical  central  schemes  for  the  hyperbolic  conserva-
tion  laws  to  solve  the  modified  Buckley–Leverett  (MBL)  equation  which  is of  pseudo-parabolic  type.  The
MBL equation  describes  two-phase  flow  in  porous  media,  and  it differs  from  the  classical  Buckley–Leverett
(BL)  equation  by  including  a balanced  diffusive–dispersive  combination.  The  classical  BL  equation  gives
a monotone  water  saturation  profile  for  any  Riemann  problem;  on  the  contrast,  when  the  dispersive
parameter  is  large  enough,  the MBL  equation  delivers  non-monotone  water  saturation  profiles  for  cer-
tain Riemann  problems  as  suggested  by  the  experimental  observations.  Numerical  results  in  this  paper
confirm  the  existence  of  non-monotone  water  saturation  profiles  consisting  of  constant  states  separated
by shocks.

© 2012  Elsevier  B.V.  All  rights  reserved.
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entral schemes

. Introduction

The classical Buckley–Leverett (BL) equation [1] is a sim-
le model for two-phase fluid flow in a porous medium. One
pplication is secondary recovery by water-drive in oil reservoir
imulation. In one space dimension the equation has the standard
onservation form

ut + (f (u))x = 0 in Q = {(x, t) : x > 0, t > 0}
u(x, 0) = 0 x ∈ (0,  ∞)

u(0, t) = uB t ∈ [0,  ∞)

(1.1)
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with the flux function f(u) being defined as

f (u) =

⎧⎪⎪⎨
⎪⎪⎩

0 u < 0,

u2

u2 + M(1 − u)2
0 ≤ u ≤ 1,

1 u > 1.

(1.2)

In this content, u : Q → [0,  1] denotes the water saturation (e.g.
u = 1 means pure water, and u = 0 means pure oil), uB is a constant
which indicates water saturation at x = 0, and M > 0 is the water/oil
viscosity ratio. The classical BL Eq. (1.1) is a prototype for conser-
vation laws with convex–concave flux functions. The graph of f(u)
and f′(u) with M = 2 is given in Fig. 1.

The classical BL Eq. (1.1) has been well studied (see [10] for an
introduction). Let  ̨ be the solution of f ′(u) = f (u)

u , i.e.,√
M

 ̨ =
M + 1

. (1.3)

The entropy solution of the classical BL equation can be classified
into two categories:

dx.doi.org/10.1016/j.jocs.2012.02.001
http://www.sciencedirect.com/science/journal/18777503
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 If 0 < uB ≤ ˛, the entropy solution has a single shock at x
t = f (uB)

uB
.

 If  ̨ < uB < 1, the entropy solution contains a rarefaction between
uB and  ̨ for f ′(uB) < x

t < f ′(˛) and a shock at x
t = f (˛)

˛ .

hese two types of solutions are shown in Fig. 2 for M = 2. In
ither case, the entropy solution of the classical BL Eq. (1.1) is a
on-increasing function of x at any given time t > 0. However, the
xperiments of two-phase flow in porous medium reveal complex
nfiltration profiles, which may  involve overshoot, i.e. profiles may
ot be monotone [4].  This suggests the need of modification to the
lassical BL Eq. (1.1).

Hassanizadeh and Gray [5,6] have included a third order mixed
erivatives dispersive term, which models the dynamic effects in
he capillary pressure difference between the two  phases. Fol-
owing the linearization and rescaling in [14–16],  the modified
uckley–Leverett equation (MBL) is derived as

∂u

∂t
+ ∂f (u)

∂x
= �

∂2
u

∂x2
+ �2�

∂3
u

∂x2∂t
, (1.4)

here � is the diffusion coefficient. van Duijn et al. [15] showed
ow � and � determine the type of the solution profile. In particu-

ar, for certain Riemann problems, the solution profile of (1.4) is not

onotone when � is larger than the threshold value �*, where �*
as numerically determined to be 0.61 [15]. The non-monotonicity

f the solution profile is consistent with the experimental observa-
ions [4].

ig. 2. The entropy solution of the classical BL equation (M = 2,  ̨ =
√

2
3 ≈ 0.8165). (a)

he  solution consists of a rarefaction between uB and  ̨ for f ′(uB) < x
t < f ′(˛) and a shock
) with M = 2.

The  classical BL Eq. (1.1) is hyperbolic, and the numerical
schemes for hyperbolic equations have been well developed (e.g.
[10,11,2,3,13,8]). The MBL  Eq. (1.4), however, is pseudo-parabolic.
van Duijn et al. [15] have developed a first order finite difference
scheme to solve the MBL  Eq. (1.4). In this paper, we will illustrate
how to extend the second and third order central schemes [13,8,9]
to solve (1.4) numerically. The local discontinuous Galerkin method
has been applied to solve equations involving mixed derivatives
uxxt term [18,19]. To the best knowledge of the authors, the cen-
tral schemes have not been applied to solve equations of this kind.
The main advantage of the central schemes is the simplicity. The
“direction of the wind” is not required to be identified, and hence
the field-by-field decomposition can be avoided.

Unlike the finite domain of dependence for the classical BL Eq.
(1.1), the domain of dependence for the MBL  Eq. (1.4) is infinite.
This naturally raises the question for the choice of computational
domain. To answer this question, Wang et al. [17] studied the MBL
equation equipped with two  types of domains, one is the half line
domain x ∈ [0, + ∞),  and the other one is finite interval domain x ∈ [0,
L]. Wang et al. [17] have shown that the difference between the
solutions of these two types of problems decays exponentially with
respect to the length of the interval L for practically interesting ini-
tial profiles. This provides a theoretical justification for the choice
of the computational domain. Therefore, the numerical results in

this paper are sought on the finite interval domain x ∈ [0, L] with
sufficiently large L.

 0 < uB = 0.7 ≤ ˛, the solution consists of one shock at x
t = f (uB )

uB
; (b)  ̨ < uB = 0.98 < 1,

 at x
t = f (˛)

˛ .
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The organization of this paper is as follows. In Section 2, the
econd and third order central schemes will be developed for MBL
quation in the finite interval domain. We  provide a detailed deriva-
ion on how to extend the central schemes [13,8] for conservation
aws to solve the MBL  Eq. (1.4). The idea of adopting numerical
chemes originally designed for hyperbolic equations to pseudo-
arabolic equations is not restricted to central type schemes only
18,19].  The numerical results in Section 3 show that the water
aturation profile strongly depends on the dispersive parameter

 value as studied in [15]. For � > �*, the MBL  Eq. (1.4) gives non-
onotone water saturation profiles for certain Riemann problems

s suggested by experimental observations [4]. Section 4 gives the
onclusion of the paper and the possible future directions.

. Numerical schemes

In this section, we show how to apply the central schemes [13,8]
riginally designed for hyperbolic conservation laws to numerically
olve the MBL  Eq. (1.4), which is of pseudo-parabolic type. Specif-
cally, we solve the following finite domain initial boundary value
roblem

ut + (f (u))x = �uxx + �2�uxxt x ∈ (0,  L), t > 0

u(x, 0) = uB�{x=0} + 0�{0<x≤L}

u(0, t) = uB, u(L, t) = 0.

(2.1)

e first collect all the terms with time derivative and rewrite MBL
q. (1.4) as

u − �2�uxx)t + (f (u))x = �uxx. (2.2)

y letting

 = u − �2�uxx ⇔ u = (I − �2�∂xx)−1w, (2.3)

BL  Eq. (2.2) can be written as

t + (f (u))x = �uxx. (2.4)

ow, the new form of MBL  Eq. (2.4) can be viewed as a PDE in terms
f w, and the occurrence of u can be recovered by (2.3). Eq. (2.4) can
e formally viewed as

t + (f ((I − �2�∂xx)−1w))x = �((I − �2�∂xx)−1w)xx, (2.5)

hich is a balance law in term of w. In this section, we demonstrate
ow to apply the second and third order central schemes to solve
he MBL  Eq. (2.2).

.1. Second-order schemes

In this section, we show how to apply the classical second order
entral schemes [13] originally designed for hyperbolic conser-
ation laws to numerically solve the MBL  Eq. (1.4), which is of
seudo-parabolic type. To solve (2.4), we modify the central scheme
iven in [13]. As in [13], at each time level, we first reconstruct a
iecewise linear approximation of the form

j(x, t) = wj(t) + (x − xj)
w′

j

�x
, xj− 1

2
≤ x ≤ xj+ 1

2
. (2.6)

econd-order accuracy is guaranteed if the so-called vector of

umerical derivative
w′

j

�x , which will be given later, satisfies

w′
j

�x
= ∂w(xj, t)

∂x
+ O(�x). (2.7)
e denote the staggered piecewise-constant functions wj+ 1
2

(t) as

j+ 1
2

(t) = 1
�x

∫ xj+1

xj

w(x, t) dx. (2.8)
ational Science 4 (2013) 12–23

Evolve the piecewise linear interplant (2.6) by integrating (2.4) over
[xj, xj+1] × [t, t + �t]

wj+ 1
2

(t + �t)

= wj+ 1
2

(t) − 1
�x

[∫ t+�t

t

f (u(xj+1, s)) ds −
∫ t+�t

t

f (u(xj, s)) ds

]

+ �
�x

[∫ t+�t

t

∫ xj+1

xj

∂2
u(x, s)
∂x2

dx ds

]
. (2.9)

We calculate each term on the right hand side of (2.9) below. For
wj+ 1

2
(t), applying the definition of Lj(x, t) and Lj+1(x, t) given in (2.6)

to (2.8), we have that

w
j+

1
2

(t) = 1
�x

∫ x
j+ 1

2

xj

Lj(x, t) dx + 1
�x

∫ xj+1

x
j+ 1

2

Lj+1(x, t) dx

= 1
2

(wj(t) + wj+1(t)) + 1
8

(w′
j − w′

j+1).

(2.10)

The middle two  integrands can be approximated by the midpoint
rule∫ t+�t

t

f
(

u
(

xj, s
))

ds =f
(

u
(

xj, t+�t

2

))
�t+O

(
�t3

)
∫ t+�t

t

f
(

u
(

xj+1, s
))

ds =f
(

u
(

xj+1, t+�t

2

))
�t+O

(
�t3

) (2.11)

if the CFL condition

� · max
xj≤x≤xj+1

∣∣∣∣∂f (u(w(x, t)))
∂w

∣∣∣∣ <
1
2

, where � = �t

�x

is met. For MBL  Eq. (2.4), we have that at t > 0,

u − �2�uxx = w, u(0) = w(0), u(L) = w(L). (2.12)

To solve the boundary value problem (2.12),  we  let v(x) =
(L−x)w(0)+xw(L)

L , then

u(x) = [(I − �2�∂xx)−1w](x) = v(x) + 1
L

∫ L

0

[w(y) − v(y)] K(x, y) dy

where

K(x, y) =
∞∑

k=1

sin
(

k�x
L

)
sin

(
k�y

L

)
1 +

(
k�
L

)2
�2�

.

Hence the eigenvalues for (I − �2�∂xx)−1 are

�k = 1

1 +
(

k�
L

)2
�2�

≤ 1, k = 1, 2, 3 . . .

Therefore, the CFL condition is

�t

�x
· max

xj≤x≤xj+1

∣∣∣∣∂f (u(w(x, t)))
∂w

∣∣∣∣
= �t · max

∣∣∣∣∂f (u(x, t))
∣∣∣∣ · �k
xj ≤ x ≤ xj+1
k = 1, 2, 3 . . .

∂u

≤ �t

�x
· 2.2 <

1
2
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n the numerical computations in Section 3, we chose �t
�x = 0.1. In

2.11),  to estimate u
(

· , t + �t
2

)
’s, we use Taylor expansion and the

onservation law (2.4):

w(xj, t + �t

2
) = wj(t) + ∂w

∂t

�t

2
+ O(�t2)

= wj(t) +
(

�
∂2

u

∂x2
− ∂f

∂x

)
�t

2
+ O(�t2)

= wj(t) + (��x  D2 uj − f ′
j
)
�

2
,

(2.13)

here D is the discrete central difference operator

2uj = uj−1 − 2uj + uj+1

�x2
,

nd the second-order accuracy is met  if

f ′
j

�x
= ∂f (u(xj, t))

∂x
+ O(�x). (2.14)

he choices for {w′
j
} in (2.7) and {f ′

j
} in (2.14) can be found in [13],

nd we chose

′
j = MM{�wj+ 1

2
, �wj− 1

2
} , f ′

j = MM{�fj+ 1
2

, �fj− 1
2
} (2.15)

here MM{x, y} = minmod(x, y) = 1
2 (sgn(x)  + sgn(y)) · Min(|x|, |y|)

nd �wj+ 1
2

= wj+1 − wj . Notice that (2.15) determines w′
j

and f ′
j

alues ultimately based on one-sided difference, which makes the
roposed schemes not purely central. However, this choice ensures
he proposed schemes to be non-oscillatory.

Combining (2.9)–(2.11),  we obtain

wj+ 1
2

(t + �t) = wj+ 1
2

(t)

−�
[

f
(

uj+1

(
t + �t

2

))
− f

(
uj

(
t + �t

2

))]

+ �
�x

[∫ t+�t

t

∫ xj+1

xj

∂2
u(x, s)
∂x2

dx ds

]
.

(2.16)

ext, we will re-write (2.16) in terms of u. (uxx)j+ 1
2

is approximated
s

uxx)j+ 1
2

= 1
�x

∫ xj+1

xj

uxx dx = 1
�x

(ux(xj+1, t) − ux(xj, t)),

nd using the cell averages, it becomes

(uxx)j+ 1
2

= 1
�x

(
uj+3/2 − uj+1/2

�x
− uj+1/2 − uj−1/2

�x

)
= uj+3/2 − 2uj+1/2 + uj−1/2

(�x)2
(2.17)
= D2uj+ 1
2

.

otice that the linear interpolation (similar to (2.6))
ational Science 4 (2013) 12–23 15

L̃j+ 1
2

(x, t + �t) = uj+ 1
2

(t + �t) + (x − xj+ 1
2

)
u′

j+ 1
2

�x

for xj ≤ x ≤ xj+1

and the cell average definition (similar to (2.8))

uj+ 1
2

(t + �t) = 1
�t

∫ xj+1

xj

u(x, t + �t) dx

ensure that

uj+ 1
2

(t + �t) = uj+ 1
2

(t + �t),

and the convertion between u and w is done using the following
relation

(I − �2� D2)u = w.  (2.18)

Hence re-writting (2.16) in terms of u gives the staggered central
scheme

(I − �2� D2)uj+ 1
2

(t + �t)

= (I − �2� D2)uj+ 1
2

(t)

− �
[

f
(

uj+1

(
t + �t

2

))
− f

(
uj

(
t + �t

2

))]

+ �
�x

[∫ t+�t

t

∫ xj+1

xj

∂2
u(x, s)
∂x2

dx ds

]
. (2.19)

We will focus on the last integral in (2.19).  There are many ways to
numerically calculate this integral. We will show two ways to do
this in the following two  subsections, both of them achieve second
order accuracy.

2.1.1. Trapezoid scheme
In this scheme, we  use the notion (2.8) and the trapezoid rule to

calculate the integral numerically as follows:∫ t+�t

t

∫ xj+1

xj

∂2
u(x, s)
∂x2

dx ds

= �x

∫ t+�t

t

(uxx)j+ 1
2

(s) ds

= �x�t

2

(
(uxx)j+ 1

2
(t) + (uxx)j+ 1

2
(t + �t))

)
(2.20)

with O(�t3) error. Combining with (2.17) and (2.19),  we  can get
the trapezoid scheme(

I −
(

�2� + ��t

2

)
D2

)
uj+ 1

2
(t + �t)

=
(

I −
(

�2� − ��t

2

)
D2

)
uj+ 1

2
(t)

− �
[

f
(

uj+1

(
t + �t

2

))
− f

(
uj

(
t + �t

2

))]
. (2.21)

The flow chart of the trapezoid scheme is given in (2.22)
(2.22)
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.1.2. Midpoint scheme
In this scheme, we use the notion (2.8) and the midpoint rule to

alculate the integral numerically as follows:

t+�t

t

∫ xj+1

xj

∂2
u(x, s)
∂x2

dx ds = �x

∫ t+�t

t

(uxx)j+ 1
2

(s) ds

= �x�t(uxx)j+ 1
2

(t + �t

2
).

ombining with (2.17) and (2.19),  we can get the midpoint scheme

I − �2� D2)uj+ 1
2

(t + �t)

= wj+ 1
2

(t) − �
[

f
(

uj+1

(
t + �t

2

))
− f

(
uj

(
t + �t

2

))]
+ ��tD2uj+ 1

2
(t + �t

2
). (2.23)

he flow chart of the midpoint scheme is given in (2.24)

.2. A third order semi-discrete scheme

Similarly, we  can extend the third order scheme to solve MBL
q. (1.4), however, it is more involved. But the third order semi-
iscrete central scheme proposed in [8] can be extended to solve
he MBL  equation in a straightforward manner. In order to make
he paper self-contained, we include the formulation below.

dwj

dt
= −Hj+1/2(t) − Hj−1/2(t)

�x
+  �Qj(t)

here w(x, t) denotes the cell average of w

wj(t) = 1
�x

∫ xj+1/2

xj−1/2

w(x, t) dx,

j+1/2(t) is the numerical convection flux and Qj(t) is a high-order
pproximation to the diffusion term uxx

Hj+1/2(t)=
f (u+

j+1/2(t))+f (u−
j+1/2(t))

2
−aj+1/2(t)

2

[
w+

j+1/2(t)−w−
j+1/2(t)

]
here u−

j+1/2(t), u+
j+1/2(t) denote the left and right intermediate

alues of u(x, tn) at xj+1/2, and their values are converted from
he w−

j+1/2(t), w+
j+1/2(t) using (2.3). The way to calculatew−

j+1/2(t),
+
j+1/2(t) and aj+1/2(t) is

w+
j+1/2(t) = Aj+1 − �x

2
Bj+1 + (�x)2

8
Cj+1,

�x (�x)2
w−
j+1/2(t) = Aj +

2
Bj +

8
Cj,

aj+1/2(t) = max

{
∂f

∂u
(u−

j+1/2(t)),
∂f

∂u
(u+

j+1/2(t))

}
,

ational Science 4 (2013) 12–23

(2.24)

where

Aj = wn
j − Gj

C

12
(wn

j+1 − 2wn
j + wn

j−1),

Bj = 1
�x

[
Gj

R(wn
j+1 − wn

j ) + Gj
C

wn
j+1 − wn

j−1

2
+  Gj

L(wn
j − wn

j−1)

]
,

Cj = 2Gj
C

wn
j−1 − 2wn

j + wn
j+1

�x2
,

Gj
i

= ˛j
i∑

m˛j
m

˛j
i
= ci

(�0 + ISj
i
)p

, i, m ∈ {C, R, L}

cL = cR = 1/4, cC = 1/2, �0 = 10−6, p = 2,

ISj
L = (wn

j − wn
j−1)2, ISj

R = (wn
j+1 − wn

j )2,

ISj
C = 13

3
(wn

j+1 − 2wn
j + wn

j−1)2 + 1
4

(wn
j+1 − wn

j−1)2.

The diffusion uxx is approximated using the following fourth-order
central differencing form

Qj(t) = −uj−2 + 16uj−1 − 30uj + 16uj+1 − uj+2

12�x2
. (2.25)

The boundary conditions (2.1) are extended to the ghost points at
the boundaries. The scheme is semi-discrete in the sense that the
discretization is done in space first, and then the time evolution
equation can be solved as a system of ordinary differential equa-
tions using any ODE solver of third order or higher. In this paper, we
simply use the standard fourth order Runge–Kutta methods. Notice
that to achieve the third order accuracy, the linear solver that con-
verts u from w using (2.3) need also to be high order, and (2.25) is
used to discretize uxx in our convertion.

3. Computational results

In this section, we show the numerical solutions to the MBL
equation

ut + (f (u))x = �uxx + �2�uxxt x ∈ (0,  L), t > 0
u(x, 0) = uB�{x=0} + 0�{0<x≤L}
u(0, t) = uB, u(L, t) = 0.

(3.1)

To validate the order analysis given in Section 2 for various schemes
proposed, we first test the order of our schemes numerically with
a smooth initial condition

u0(x) = uBH(x − 5, 5),

where ⎧⎪ 1 if x < −	
H(x, 	) =
⎪⎨
⎪⎪⎩ 1 − 1

2

(
1 + x

	
+ 1

�
sin

(
�x

	

))
if −	 ≤ x ≤ 	

0 if x > 	

.
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Table  1
The accuracy test for the trapezoid scheme for the MBL  Eq. (3.1) with � = 1 and M = 2.

N

∣∣∣∣∣∣u�x − u �x
2

∣∣∣∣∣∣
1

Order

∣∣∣∣∣∣u�x − u �x
2

∣∣∣∣∣∣
2

Order

∣∣∣∣∣∣u�x − u �x
2

∣∣∣∣∣∣
∞

Order

60 7.5416e−03 – 2.5388e−03 – 1.5960e−03 –
uB = 0.9 120 1.9684e−03 1.9379 6.7288e−04 1.9157 4.4066e−04 1.8568
�  = 0.2 240 4.9891e−04 1.9802 1.7645e−04 1.9311 1.2529e−04 1.8144

480 1.2589e−04  1.9865 4.5366e−05 1.9596 3.3205e−05 1.9158

60  8.0141e−03 – 2.6069e−03 – 1.4989e−03 –
uB = 0.9 120 2.1502e−03 1.8981 7.0452e−04 1.8876 4.2221e−04 1.8279
�  = 1 240 5.5697e−04 1.9488 1.8259e−04 1.9480 1.1283e−04 1.9038

480 1.4104e−04 1.9815 4.6109e−05 1.9855 2.8719e−05 1.9740

60 1.3102e−02 – 4.1784e−03 – 2.2411e−03 –
uB = 0.9 120 3.6201e−03 1.8557 1.0994e−03 1.9263 6.1060e−04 1.8759
�  = 5 240 9.6737e−04 1.9039 2.8089e−04 1.9686 1.5667e−04 1.9625

480  2.5825e−04 1.9053 7.1250e−05 1.9790 3.9286e−05 1.9956

60 6.4427e−03  – 2.1578e−03 – 1.1682e−03 –
uB =  ̨ 120 1.6611e−03 1.9555 5.7775e−04 1.9011 3.6447e−04 1.6804
�  = 0.2 240 4.3643e−04 1.9283 1.5215e−04 1.9250 1.0389e−04 1.8107

480  1.1223e−04 1.9593 3.9170e−05 1.9577 2.7629e−05 1.9109

60 7.5867e−03 – 2.4101e−03 – 1.3364e−03 –
uB =  ̨ 120 2.0069e−03 1.9185 6.4998e−04 1.8906 3.7650e−04 1.8277
�  = 1 240 5.1832e−04 1.9531 1.6801e−04 1.9519 1.0062e−04 1.9037

480  1.3136e−04 1.9803 4.2497e−05 1.9831 2.5599e−05 1.9748

60  1.1959e−02 – 3.8026e−03 – 1.9938e−03 –
uB =  ̨ 120 3.2940e−03 1.8602 9.9527e−04 1.9338 5.4231e−04 1.8783
�  = 5 240 8.7736e−04 1.9086 2.5358e−04 1.9727 1.3933e−04 1.9606

480  2.3271e−04 1.9146 6.4252e−05 1.9806 3.4967e−05 1.9944

60  5.7714e−03 – 1.9358e−03 – 1.0481e−03 –
uB = 0.75 120 1.5035e−03 1.9406 5.1617e−04 1.9070 2.8061e−04 1.9011
�  = 0.2 240 3.9299e−04 1.9357 1.3616e−04 1.9225 7.9134e−05 1.8262

480  1.0063e−04 1.9655 3.5080e−05 1.9566 2.1035e−05 1.9115

60  7.1823e−03 – 2.2843e−03 – 1.2069e−03 –
uB = 0.75 120 1.8963e−03 1.9213 6.1315e−04 1.8974 3.4013e−03 1.8272
�  = 1 240 4.8284e−04 1.9736 1.5796e−04 1.9567 9.0912e−04 1.9035

480 1.2093e−04  1.9974 3.9783e−05 1.9894 2.3121e−05 1.9753

60  1.1042e−02 – 3.5020e−03 – 1.8299e−03 –
9.1
2.3
5.8

T
c
a
t
s
u
r
L
o
f
2

(
n

t
f

u

T
d
a
t
t
c

post-shock value uB of the initial condition vary. The solution of
(3.1) has been proven to display qualitatively different profiles for
parameter values (�, uB) falling in different regimes of the bifurca-
tion diagram. In particular, for every fixed � value, there are two
uB = 0.75 120 3.0287e−03 1.8662 

�  = 5 240 8.0111e−04 1.9186 

480 2.1076e−04  1.9264 

he final time T = 1 was employed, so that there was  no shock
reated. � in the MBL  Eq. (3.1) is taken to be 1, M is taken to be 2,
nd the computational interval is [− 10, 20]. The L1, L2, L∞ order
ests of the trapezoid scheme and the third order semi-discrete
cheme with different parameter � values and the initial condition
B are given in Tables 1 and 2. Table 1 shows that the trapezoid
ule achieved second order accuracy for all the tested cases in L1,
2, L∞ sense. Table 2 shows that the semi-discrete scheme has the
rder of accuracy greater than 2.3 for all the cases, and exceeds 3
or some cases. This confirms the accuracy study given in Sections
.1.1 and 2.2 respectively.

We  will now use examples to study the solutions to MBL  Eq.
3.1) using the numerical schemes proposed in Section 2. We  first
otice that if we scale t and x as follows

t̃ = t

�
, x̃  = x

�
,

hen MBL  (3.1) equation can be written in terms of t̃ and x̃ as
ollows

t̃ + (f (u))x̃ = ux̃x̃ + �ux̃x̃t̃ . (3.2)

he scaled Eq. (3.2) shows that it is the magnitude of t
� and x

� that
etermine the asymptotic behavior, not t, x, neither � alone [15]. In

ddition, (3.2) also shows that the dispersive parameter � denotes
he relative importance of the dispersive term uxxt. The bigger � is,
he more dispersive effect Eq. (3.1) has. This can be seen from the
omputational results to be shown later in this section.
181e−04 1.9414 4.8976e−04 1.9016
118e−04 1.9797 1.2593e−04 1.9595
358e−05 1.9860 3.1627e−05 1.9934

van Duijn et al. [15] numerically provided a bifurcation diagram
(Fig. 3) of MBL  (3.1) equation as the dispersive parameter � and the
Fig. 3. The bifurcation diagram of the MBL  Eq. (1.4) with the bifurcation parameters
(�, uB).
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Table 2
The accuracy test for the third order semi-discrete scheme for the MBL  Eq. (3.1) with � = 1 and M = 2.

N

∣∣∣∣∣∣u�x − u �x
2

∣∣∣∣∣∣
1

Order

∣∣∣∣∣∣u�x − u �x
2

∣∣∣∣∣∣
2

Order

∣∣∣∣∣∣u�x − u �x
2

∣∣∣∣∣∣
∞

Order

120 2.6992e−03 – 1.1300e−03 – 7.2363e−04 –
uB = 0.9 240 4.0403e−04 2.7400 1.7079e−04 2.7260 1.1283e−04 2.6811
�  = 0.2 480 5.7504e−05 2.8127 2.4624e−05 2.7941 1.6242e−05 2.7963

960 8.4934e−06  2.7592 3.0892e−06 2.9948 1.7607e−06 3.2055

120  4.7731e−03 – 2.0192e−03 – 1.7267e−03 –
uB = 0.9 240 8.7205e−04 2.4524 3.6879e−04 2.4529 3.0632e−04 2.4949
�  = 1 480 1.2006e−04 2.8606 5.0480e−05 2.8690 4.1985e−05 2.8671

960 1.5942e−05 2.9129 6.6663e−06 2.9208 5.1464e−06 3.0282

120 3.7573e−03 – 1.2122e−03 – 7.9211e−04 –
uB = 0.9 240 7.4624e−04 2.3320 2.4164e−04 2.3267 1.5061e−04 2.3949
�  = 5 480 1.1994e−04 2.6373 3.8434e−05 2.6524 2.5089e−05 2.5857

960  1.5565e−05 2.9460 4.9190e−06 2.9660 3.1363e−06 2.9999

120 2.1836e−03  – 9.1039e−04 – 5.7219e−04 –
uB =  ̨ 240 3.2729e−04 2.7381 1.3760e−04 2.7260 8.9550e−05 2.6757
�  = 0.2 480 4.6856e−05 2.8043 1.9909e−05 2.7890 1.2935e−05 2.7914

960  6.7382e−06 2.7978 2.3182e−06 3.1023 1.4109e−06 3.1965

120 3.9014e−03 – 1.6388e−03 – 1.3873e−03 –
uB =  ̨ 240 7.0517e−04 2.4680 2.9669e−04 2.4656 2.4272e−04 2.5149
�  = 1 480 9.6528e−05 2.8690 4.0354e−05 2.8781 3.3125e−05 2.8733

960  1.2890e−05 2.9047 5.3648e−06 2.9111 4.0754e−06 3.0229

120  3.0797e−03 – 9.9202e−04 – 6.4456e−04 –
uB =  ̨ 240 6.1133e−04 2.3328 1.9783e−04 2.3261 1.2277e−04 2.3924
�  = 5 480 9.7351e−05 2.6507 3.1222e−05 2.6637 2.0263e−05 2.5990

960  1.2396e−05 2.9733 3.9513e−06 2.9822 2.4962e−06 3.0210

120  1.8244e−03 – 7.5548e−04 – 4.6671e−04 –
uB = 0.75 240 2.7262e−04 2.7425 1.1419e−04 2.7260 7.3299e−05 2.6707
�  = 0.2 480 3.9198e−05 2.7980 1.6562e−05 2.7855 1.0681e−05 2.7788

960  5.4739e−06 2.8401 1.9677e−06 3.0733 1.3232e−06 3.0129

120  3.2727e−03 – 1.3672e−03 – 1.1477e−03 –
uB = 0.75 240 5.8671e−04 2.4798 2.4585e−04 2.4754 1.9866e−04 2.5304
�  = 1 480 7.9974e−05 2.8750 3.3285e−05 2.8848 2.7033e−05 2.8775

960 1.0724e−05  2.8987 4.4466e−06 2.9041 3.3341e−06 3.0193

120  2.5902e−03 – 8.3335e−04 – 5.3882e−04 –
1.6
2.6
3.2

c
(
t

(

(

F
n

uB = 0.75 240 5.1342e−04 2.3348 

�  = 5 480 8.1062e−05 2.6630 

960 1.0173e−05  2.9944 

ritical uB values, namely, u and u. From the bifurcation diagram
Fig. 3), it is clear that, when � < �*, u = u = ˛. For a fixed � value,
he solution has three different profiles.

a) If uB ∈ [u, 1], the solution contains a plateau value uB for 0 ≤ x
t ≤
df
du (uB), a rarefaction wave connecting uB to u for df

du (uB) ≤ x
t ≤

df
du (u), another plateau value u for df

du (u) < x
t < f (u)

u
, and a shock

from u down to 0 at x
t = f (u)

u
(see Fig. 4(a)).

ig. 4. Given a fixed �, the three qualitatively different solution profiles due to different va
on-monotonicity, which is consistent with the experimental observations [4].  (a)–(c) ar
611e−04 2.3268 1.0271e−04 2.3913
032e−05 2.6738 1.6813e−05 2.6109
662e−06 2.9946 2.0473e−06 3.0377

b) If uB ∈ (u, u), the solution contains a plateau value uB for 0 ≤
x
t < f (u)−f (uB)

u−uB
, a shock from uB up to u at x

t = f (u)−f (uB)
u−uB

, another

plateau value u for f (u)−f (uB)
u−uB

< x
t < f (u)

u
, and a shock from u

down to 0 at x
t = f (u)

u
(see Fig. 4(b)). The solution may  exhibit a

damped oscillation near u = u .
B

(c) If uB ∈ (0,  u], the solution consists a single shock connecting
uB and 0 at x

t = f (uB)
uB

(see Fig. 4(c)). It may  exhibit oscillatory
behavior near u = uB.

lues of uB . In particular, when � > �* and u < uB < u, the solution profile (b) displays
e demonstrative figures.
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Table  3
9  pairs of (�, uB) values with either fixed � value or fixed uB value used in Examples
1–6.

(�, uB) Example 4 Example 5 Example 6

Example 1 (0.2, 0.9) (1, 0.9) (5, 0.9)

N
(
e

t
p
b
s
M
s
s
o
s
h
a
s
s

w

˛

w
�
w
u
d

E

(
p
t
w
f

w

t
a

T
�

t

v

s

u
t

E

(
s
s

s

t

Example 2 (0.2, ˛) (1, ˛) (5, ˛)
Example 3 (0.2, 0.75) (1, 0.75) (5, 0.75)

otice that when � > �* and u < uB < u, the solution profiles
Fig. 4(b)) displays non-monotonicity, which is consistent with the
xperimental observations [4].

In the numerical computation we show below, we  will therefore
est the accuracy and capability of central schemes for different
arameter values (� and uB) that fall into various regimes of the
ifurcation diagram, and therefore display qualitatively different
olution profiles. The numerical experiments were carried out for

 = 2, � = 0.001 and T = 4000 × �, i.e. T̃ = 4000 to get the asymptotic
olution profiles, and �x  was chosen to be �

10 and � = �t
�x was cho-

en to be 0.1. The scheme used in the computation is the second
rder Trapezoid scheme as shown in Section 2.1.1. The Midpoint
cheme delivers similar computational results, hence is omitted
ere. The solution profiles at T

4 (blue), 2∗T
4 (green), 3∗T

4 (magenta)
nd T (black) are chosen to demonstrate the time evolution of the
olutions. The red dashed lines are used to denote the theoretical
hock locations and plateau values for comparison purpose.

We start with � > 0. Based on the bifurcation diagram (Fig. 3),
e choose three representative uB values, i.e. uB = 0.9 > ˛, uB =

 =
√

M
M+1 =

√
2
3 (for M = 2) and uB = 0.75 < ˛. For each fixed uB,

e choose three representative � values, i.e. � = 0.2 < �* ≈ 0.61,
 = 1 > �* with uB = 0.75 < u�=1 < uB =  ̨ < u < uB = 0.9, and � = 5
ith uB = 0.75, ˛, 0.9 ∈ [u�=5, u�=5]. We  first use this 9 pairs of (�,

B) values given in Table 3 to validate the solution profiles with the
emonstrative solution profiles given in Fig. 4.

xample 1. (�, uB) = (0.2, 0.9), (�, uB) = (1, 0.9), (�, uB) = (5, 0.9).
When uB = 0.9 >  ̨ is fixed, we increase � from 0.2 to 1 to 5

Fig. 5(a)–(c)), the dispersive effect starts to dominate the solution
rofile. When � = 0.2 (Fig. 5(a)), the solution profile is similar to
he classical BL equation solution (see Fig. 2(b)), with a rarefaction
ave for x

t ∈ [f ′(u = 0.9), f ′(u = ˛) = f ′(u = u�=0.2)] and a shock
rom u =  ̨ to u = 0 at x

t = f ′(˛). This corresponds to Fig. 4(a)

ith df
du (u�=0.2 = ˛) = f (u�=0.2)

u�=0.2
= f (˛)

˛ . When � = 1 (Fig. 5(b)),

he rarefaction wave is between x
t ∈ [f ′(u = 0.9), f ′(u = u�=1)]

nd the solution remains at the plateau value u = u�=1 for
x
t ∈

[
f ′(u = u�=1), f (u�=1)

u�=1

]
and the shock occurs at x

t = f (u�=1)
u�=1

.

his corresponds to Fig. 4(a) with uB = 0.9 > u�=1 ≈ 0.86. When
 = 5 (Fig. 5(c)), the solution displays the first shock from u = 0.9
o u = u�=5 at x

t = f (u�=5)−f (uB)
u�=5−uB

, and then remains at the plateau

alue u = u�=5 for x
t ∈

[
f (u�=5)−f (uB)

u�=5−uB
, f (ū�=5)

u�=5

]
and the second

hock occurs at x
t = f (ū�=5)

u�=5
. This corresponds to Fig. 4(b) with

�=5 ≈ 0.68 < uB = 0.9 < u�=5 ≈ 0.98. Notice that as � increases,
he rarefaction region shrinks and the plateau region enlarges.

xample 2. (�, uB) = (0.2, ˛), (�, uB) = (1, ˛), (�, uB) = (5, ˛).
When uB =  ̨ is fixed, we increase � from 0.2 to 1 to 5

Fig. 5(d)–(f)), the dispersive effect starts to dominate the
olution profile. When � = 0.2, the solution displays one single
hock at x

t = f (˛)
˛ . For both � = 1 and � = 5, the solution has two

x f (u�=1(�=5  respectively))−f (˛)

hocks, one at t =

u�=1(�=5  respectively)−˛
, and another one at

x
t = f (u�=1(�=5  respectively))

u�=1(�=5  respectively)
. For both � = 1 and � = 5 (Fig. 5(e) and 5(f)),

he solutions correspond to Fig. 4(b), which are consistent with the
ational Science 4 (2013) 12–23 19

experimental observations. Notice that as � increases from 1 to 5,
i.e. the dispersive effect increases, the inter-shock interval length
increases at every fixed time (compare Fig. 5(e) with Fig. 5(f)). In
addition, for a fixed � = 1 (� = 5 respectively), as time progresses,
the inter-shock interval length increases in the linear fashion (see
Fig. 5(e) and (f) respectively)).

Example 3. (�, uB) = (0.2, 0.75), (�, uB) = (1, 0.75), (�, uB) = (5, 0.75).
When uB = 0.75 < =  ̨ is fixed, we  increase � from 0.2 to 1 to

5 (Fig. 5(g)–(i)), the start to dominate the solution profile in the
similar fashion as uB = 0.9 and uB = ˛. Notice that when � = 1, since
uB = 0.75 is very close to u�=1, the solution displays oscillation at x

t =
f (uB)

uB
(Fig. 5(h)). If we increase � further to � = 5, the dispersive effect

is strong enough to create a plateau value at u ≈ 0.98 (see Fig. 5(i)).

Example 4. (�, uB) = (0.2, 0.9), (�, uB) = (0.2, ˛), (�, uB) = (0.2, 0.75).
Now, we fix � = 0.2, decrease uB from 0.9 to ˛, to 0.75 (Fig. 5(a),

(d) and (g)). If uB >  ̨ the solution consists a rarefaction wave con-
necting uB down to ˛, then a shock from  ̨ to 0, otherwise, the
solution consists a single shock from uB down to 0. In all cases, since
� = 0.2 < �*, regardless of the uB value, the solution will not display
non-monotone behavior, due to the lack of dispersive effect.

Example 5. (�, uB) = (1, 0.9), (�, uB) = (1, ˛), (�, uB) = (1, 0.75).
Now, we  fix � = 1, decrease uB from 0.9 to ˛, to 0.75 (Fig. 5(b), (e),

and (h)). If uB = 0.9 > u�=1, the solution consists a rarefaction wave
connecting uB and u, and a shock connecting u down to 0 (Fig. 5(b)).
Even if u < uB < u, because � = 1 > �*, the solution still has a chance
to increase to the plateau value u as seen in Fig. 5(e). But, if uB is too
small, for example, uB = 0.75 < u, the solution does not increase to
u any more, instead, it consists a single shock connecting uB down
to 0 (Fig. 5(h)).

Example 6. (�, uB) = (5, 0.9), (�, uB) = (5, ˛), (�, uB) = (5, 0.75).
Now, we fix � = 5, decrease uB from 0.9 to ˛, to 0.75 (Fig. 5(c),

(f) and (i)). For all three uB, they are between u�=5 and u�=5,
hence all increase to the plateau value u�=5 ≈ 0.98 before dropping
to 0. Notice that as uB decreases, the inter-shock interval length
decreases at every fixed time (compare Fig. 5(c), (f) and (i)). This
shows that when the dispersive effect is strong (� > �*), the bigger
uB is, the bigger region the solution stays at the plateau value.

Example 7. (�, uB) = (0, 0.9), (�, uB) = (0, ˛), (�, uB) = (0, 0.75).
We now show the solution profiles for the extreme � value, i.e.

� = 0 in Fig. 6(a) (uB = 0.9), (b) (uB = ˛) and 6(c) (uB = 0.75). Notice
that these are cases of classical BL equation with small diffusion
�uxx. We  compare Fig. 6(a)–(c) with the solution of the classical
BL equation given in Fig. 2(a) and (b), it is clear that they show
qualitatively same solution profiles. The difference is that due to the
diffusion term in the MBL  equation, as shown in Fig. 6, the solutions
do not have sharp edges right at the shock, instead, the solutions
smear out a little. Notice that this smearing effect is also partially
introduced by the central scheme. It is well known that central
scheme is non-oscillatory, i.e. it generates numerical viscosity. If we
compare Fig. 6(a)–(c) with Fig. 5(a), (d) and (g), there is no visible
difference. This shows that once � < �*, solution profile will stay the
same for a fixed uB value.

Example 8. (�, uB) = (5, 0.99), (�, uB) = (5, 0.98), (�, uB) = (5, 0.97).
We also study the solution profiles for uB close to u. For example,

when � = 5, u ≈ 0.98, we hence choose uB = 0.99, uB = 0.98, uB = 0.97
and solutions are shown in Fig. 7(a)–(c). If uB = 0.99 > u�=5 ≈ 0.98,
the solution drops to the plateau value u, then drops to 0 (see
Fig. 7(a)). If uB = 0.98 ≈ u�=5, the solution remains at plateau value
u�=5 and then drop to 0 (see Fig. 7(b)). If uB = 0.97 < u�=5, the solu-

tion increases to the plateau value u�=5 ≈ 0.98, then drops to 0 (see
Fig. 7(c)). In all cases, the transition from uB to u�=5 ≈ 0.98 takes
very small space. In the majority space, the solution keeps to be the
plateau value u�=5 ≈ 0.98.
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Fig. 5. Numerical solutions to MBL  equation with parameter settings fall in different regimes of the bifurcation diagram (Fig. 3). The color coding is for different time: 1
4 T

(blue), 2
4 T (green), 3

4 T (magenta) and T (black). The results are discussed in examples 1–6. In figures (d)–(f),  ̨ =
√

M
M+1 =

√
2
3 for M = 2. (For interpretation of the references

to  color in this figure legend, the reader is referred to the web  version of this article.)

Fig. 6. The numerical solutions of the MBL  equation at T = 1 with � = 0 and different uB values. The results are discussed in example 7.

Fig. 7. Numerical solutions to MBL  equation with uB close to u�=5 ≈ 0.98. The color coding is for different time: 1
4 T (blue), 2

4 T (green), 3
4 T (magenta) and T (black). The results

are  discussed in example 8. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Numerical solutions to MBL  equation with uB close to u�=5 ≈ 0.68. The color coding is for different time: 1
4 T (blue), 2

4 T (green), 3
4 T (magenta) and T (black). The results

are  discussed in example 9. (For interpretation of the references to color in this figure legend, the reader is referred to the web  version of this article.)

Fig. 9. Numerical solutions to MBL  equation with small constant uB = 0.6 and different � values. The figures on the second and third rows are the magnified versions of the
first  row at t = 1

4 T and t = T respectively. The color coding is for different time: 1
4 T (blue), 2

4 T (green), 3
4 T (magenta) and T (black). The results are discussed in examples 10.

(For  interpretation of the references to color in this figure legend, the reader is referred to the web  version of this article.)
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ig. 10. The numerical solutions of MBL  equation at T = 0.5 with �  = 0.001 (blue), �
indows are zoomed into the regions where different � values impose different solu

o  color in this figure legend, the reader is referred to the web  version of this article

xample 9. (�, uB) = (5, 0.7), (�, uB) = (5, 0.69), (�, uB) = (5, 0.68), (�,
B) = (5, 0.67), (�, uB) = (5, 0.66).

In addition, we study the solution profiles for uB

lose to u. For example, when � = 5, u ≈ 0.68, we hence
hoose uB = 0.7, uB = 0.69, uB = 0.68, uB = 0.67, uB = 0.66 and
olutions are shown in Fig. 8(a)–(e). As uB decreases crossing

�=5 ≈ 0.68, the solution gradually stops increasing to the plateau
alue u�=5, and the inter-shock interval length decreases (compare
ig. 8(a)–(c)). The oscillation in Fig. 8(d) and (e) are due to the fact
hat uB values are too close to u�=5. This confirms that even with
ig dispersive effect (say � = 5), if uB is too small (e.g. uB < u), the
olution will not exhibit non-monotone behavior.

xample 10. (�, uB) = (0.2, 0.6), (�, uB) = (1, 0.6), (�, uB) = (5, 0.6).
We  fix uB to be small, and in this example, we  take it to

e uB = 0.6. We  vary the � value, from � = 0.2 < �* to � = 1 barely
arger than �* to � = 5 > �*. The numerical solutions are given in
ig. 9(a)–(c). As � increases, the post-shock value remains the same,
ut there will be oscillation generated as � becomes larger than
*. Fig. 9(d)–(f) show that as � increases, the oscillation amplitude
ncreases and oscillates more rounds. Notice that � is the dispersive
arameter, and this means that even for small uB value, different

ispersive parameter values still give different dispersive effects,
lthough none can bring the solution to the plateau value u. Com-
aring Fig. 9(d)–(f) with Fig. 9(g)–(i), it is clear that the oscillation
mplitude remains steady with respect to time.
02 (yellow), � = 0.003 (magenta), � = 0.004 (green), and � = 0.005 (black). The view
rofiles. The results are discussed in example 11. (For interpretation of the references

Example 11. � = 0.001, � = 0.002, � = 0.003, � = 0.004, � = 0.005.
In this example, we will compare the solution profiles for differ-

ent � values. Fixing T = 0.5, �x  = 0.0001, � = �t
�x = 0.1, we  show

the numerical results in Fig. 10 for � = 0.001 (blue), � = 0.002 (yel-
low), � = 0.003 (magenta), � = 0.004 (green), and � = 0.005 (black).
For the purpose of cross reference, we choose the same nine sets of
parameter settings as in examples 1–6. To assist the observation,
the figures in Fig. 10 are zoomed into the regions where different
� values introduce different solution profiles. The numerical solu-
tions clearly show that as � increases, the numerical solution is
smeared out, and the jump location becomes less accurate. Notice
that � is responsible for the competition between the diffusion and
dispersion, which in turn determines the plateau values. Hence
varying � value does not affect the plateau location.

4. Conclusion

We  extended the second and third order classical central
schemes originally designed for the hyperbolic systems to solve the
MBL  equation, which is of pseudo-parabolic type. The numerical
solutions for qualitatively different parameter values � and initial

conditions uB show that the jump locations are consistent with the
theoretical calculation and the plateau heights are consistent with
the numerically obtained values given in [15]. In particular, when
� > �*, for uB ∈ (u, u), the numerical solutions give non-monotone
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ater saturation profiles, which is consistent with the experimen-
al observations. In addition, the order tests show that the proposed
econd and third order central schemes achieved the desired accu-
acies.

In [16,14], the two-dimensional space extension of the modi-
ed Buckley–Leverett equation has been derived. One of the future
irections is to develop high order numerical schemes to solve the
wo-dimensional MBL  equation. Central schemes have been used to
olve high dimensional hyperbolic problem and dispersive problem
7,12],  which makes it a good candidate for such a task.
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